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ABSTRACT

Obtaining frequency information of data streams, in limited
space, is a well-recognized problem in literature. A num-
ber of recent practical applications (such as those in com-
putational advertising) require temporally-aware solutions:
obtaining historical count statistics for both time-points as
well as time-ranges. In these scenarios, accuracy of esti-
mates is typically more important for recent instances than
for older ones; we call this desirable property Time Adap-
tiveness. With this observation, [20] introduced the Hoku-

sai technique based on count-min sketches for estimating the
frequency of any given item at any given time. The proposed
approach is problematic in practice, as its memory require-
ments grow linearly with time, and it produces discontinu-
ities in the estimation accuracy. In this work, we describe a
new method, Time-adaptive Sketches, (Ada-sketch), that
overcomes these limitations, while extending and providing a
strict generalization of several popular sketching algorithms.

The core idea of our method is inspired by the well-known
digital Dolby noise reduction procedure that dates back to
the 1960s. The theoretical analysis presented could be of
independent interest in itself, as it provides clear results for
the time-adaptive nature of the errors. An experimental
evaluation on real streaming datasets demonstrates the su-
periority of the described method over Hokusai in estimating
point and range queries over time. The method is simple to
implement and offers a variety of design choices for future ex-
tensions. The simplicity of the procedure and the method’s
generalization of classic sketching techniques give hope for
wide applicability of Ada-sketches in practice.

1. INTRODUCTION AND MOTIVATION
“Scaling Up for High Dimensional Data and High Speed

Data Streams” has been recognized one of the top 10 chal-
lenging problems in data mining research [25]. Mining big
data streams brings three major challenges: volume, velocity
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and volatility [18]. Volume and velocity require processing
a high volume of data in limited time. Consider the case
of click-through probability prediction, a central problem
for online advertising, which is estimated to be a $230 bil-
lion dollar industry1. This industry relies on tracking and
responding to the behavior of billions of users, to whom
large platforms must serve tens of millions of ad impres-
sions per hour with typical response times under 50ms per
request [15]. Moreover, it is essential to rapidly update pre-
dictive models as new clicks and non-clicks are observed [21].
Maximizing predictive accuracy demands keeping track of
the counts of many combinations of events (such as clicks
and impressions broken down by country, IP, advertiser, or
ad-type), leading to a blow-up in the number of items under
consideration. Volatility, on the other hand, corresponds to
a dynamic environment with ever-changing patterns, mak-
ing the scale of the problem even worse. A major reason
for volatility is the drift in the distributions of patterns of
interest over time, and constant churn of users, advertisers
and content providers [18].

Obtaining frequency information, or statistical patterns of
interest, from data streams is an important problem in this
context. Count-based features are commonly used in prac-
tice for many predictive tasks. For example, features such as
counts of number of clicks on “Amazon.com”, given specific
user characteristics, in the past hour, are common in click-
through probability prediction. In particular, there is a need
to estimate the count of a given item i (or event, or com-
binations thereof) during some specified time t, or in some
[t1, t2] range [23, 20, 16]. Since the number of possible com-
binations is enormous, we end up with the classical problem
of counting under memory and time constraints over stream-
ing data in one pass. Note that in the streaming setting, we
only see increments in counts over time, and hence cannot
store all items seen, which makes estimation with limited
resources a challenging problem.

Typically, items with highest counts, commonly known
as heavy hitters, are of most interest. However, identify-
ing heavy hitters in streaming data is a non-trivial task
with limited memory. There has been a strong line of work
in computing limited-memory summaries, popularly called
sketches [13] of data streams, allowing approximate estima-
tion of the counts [12, 1, 14, 6, 22, 10, 2], even over dynamic
temporal streams [8, 17]. Sketches allow high-accuracy esti-
mation of heavy hitters. Notable among them is the Count-
Min Sketch [7], an accurate technique widely popular due to
its simplicity and parallelizability.

1Source: http://www.emarketer.com/, Dec. 2014



With more than 30 years of active research, existing data
stream sketching techniques can reasonably address the chal-
lenges of volume and velocity. However, the volatility aspect
of the problem has received little attention. With chang-
ing patterns, drift in distributions over time is commonly
observed in data streams, sometimes with high variance in
so-called bursty data streams. In a drifting distribution, as
was pointed out in [18], “old data is of limited use, even if it
could be saved and processed again later”. This is because,
in most applications, recent patterns have more predictive
power compared to patterns in the past. For instance, most
recent variations in credit history are much stronger indica-
tors of a person’s ability to make loan payments compared
to variations in credit history from distant past.

Thus, given a limited resource budget, if we have to trade
off errors effectively, we need to be more accurate in estimat-
ing the recent statistics (or counts) compared to the older
ones [20]. In particular, we need sketches that are “time
adaptive”. Classical sketching techniques are oblivious to
time, and hence do not provide this smarter trade-off. The
focus of this paper is developing sketches for accurate esti-
mation that provide such desired time adaptability.

An obviously tempting and reasonable attempt to achieve
time adaptability is to allocate resources to different time
periods disproportionately. More specifically, if we create
large-size sketches to handle recent events, and use small-size
sketches for older intervals, we can immediately achieve time
adaptability, as sketch size directly translates to accuracy for
reasonable algorithms. The key challenge lies in designing
algorithms that dynamically adjust per-interval sketch sizes
and reallocate them in streaming fashion as time passes.
Addressing this problem was the key insight of the recently
proposed Hokusai algorithm [20] for item aggregation.

An open problem for Hokusai algorithm lies in its allo-
cation of a fixed-size sketch for each time point t, regard-
less of the number of distinct items contained in it. Let us
consider a “bursty” data distribution, where a million items
arrived at a single time point t′, with many fewer arriving
at subsequent times. In order to represent this data with
high accuracy, Hokusai must allocate sketches with O(106)
cells not only to the time point t′, but also to every time
point t > t′, even though most of the space in sketches for
subsequent times will be wasted.

As described in Section 2.6, discontinuities in the degrada-
tion of Hokusai estimates with time is a significant problem.
Such issues are inherent to any approach that associates a
sketch with every time instance t. As an alternative, we
provide a time-adaptive solution based on a very different
approach motivated by the noise reduction literature, which
avoids the limitations of Hokusai, while yielding signifi-
cantly higher accuracy at the same time.

Our Contributions: We present Time-adaptive Sketches
(Ada-sketch) for estimating the frequency of any given
item i at given time t, or over a time interval [t1, t2], using
limited space. Ada-sketches provide a strict generalization of
several well-studied sketching algorithms in the data streams
literature for obtaining temporal estimates. The proposed
generalization, while retaining the counts of heavy hitters
with good accuracy, also provides provable time-adaptive
estimation guarantees. In particular, the estimate of the
count of item i during time t is more accurate compared to
the estimate of same item i during time t′ for all t′ ≤ t. The

key idea in our proposed technique is the use of pre-emphasis
and de-emphasis transformations analogous to those used in
the popular Digital Dolby systems for noise reduction.

We demonstrate that the method can provide a variety of
desired time-adaptive estimates by appropriately engineer-
ing the choice of pre-emphasis and de-emphasis transforma-
tions. More formally, the problem of finding the right sketch
for the application at hand reduces to solving a given set
of simultaneous equations and finding the appropriate pre-
emphasis and de-emphasis transformations. This reduction
could be of independent theoretical interest in itself.

We provide theoretical analysis and quantifications of er-
ror bounds with Ada-sketches for both point and range queries.
The analysis confirms the adaptive nature of errors with
time. An experimental evaluation on two real streaming
datasets supports the theoretical claims: estimation accu-
racy shows time-adaptive behavior for both point and range
queries, as expected from our analysis. Experimental com-
parisons also clearly show the advantages of the described
method over the previously proposedHokusai [20] temporally-
aware sketches.

Ada-sketches simultaneously address and allow trading off
the three key challenges of data stream algorithms: volume,
velocity and volatility. Holistically addressing these chal-
lenges has been called out as an important yet understudied
research direction [18], and we hope that this work will lead
to further exciting developments in the area.

2. REVIEW

2.1 Notation
We assume the usual turnstile streaming model with pos-

itive updates [22]. The set of all items will be denoted by
I = {1, 2, ..., N}. Time starts from t = 0, and the current
time will be denoted by T > 0. The total increment to item
i during time instance (or interval) t will be denoted by cti,
which is an aggregation of many streaming updates arriving
at t. The results in this paper, without loss of any gener-
ality and for notational convenience, will use cti to refer to
the current update. We consider t to be a discrete times-
tamp or time interval of some fixed length and appropriate
granularity. Ct =

∑
i∈I c

t
i denotes the total increment of all

items during time t. We define stream moments as

MT =

T∑

t=0

Ct; MT
2 =

T∑

t=0

(Ct)2

2.2 Count-Min Sketch (CMS)
The Count-Min Sketch (CMS) [7] algorithm is a gener-

alization of Bloom filters [4] that is a widely popular in
practice for estimating counts of items over data streams.
CMS is a data structure with a two-dimensional array of
counter cells M of width w and depth d, shown in Fig-
ure 1. It is accessed via d pairwise-independent hash func-
tions h1, h2, ..., hd : {1, 2, ..., N} 7→ {1, 2, ..., w}. Each counter
is initialized with zero, and every update cti is added for all
d rows to counters M(j, hj(i)), where j = {1, 2, ..., d}. A
query for the count of item i reports the minimum of the
corresponding d counters i.e., min

j∈{1,2,...,d}
M(j, hj(i)). This

simple algorithm has strong error guarantees and is very
accurate for estimating heavy hitters over entire streams,
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Figure 1: Count-Min Sketch Data Structure

with its simplicity and easy parallelization contributing to
its wide adoption.

2.3 Lossy Counting (LC)
Lossy Counting [19] is another popular algorithm for count-

ing frequent items over data streams. The algorithm keeps
a fixed-size map of items and their counts seen so far. When-
ever an update cti arrives, the algorithm increments the map’s
counter corresponding to item i by cti, if item i is present in
the map. If the map does not contains item i, the algorithm
allocates memory for i. When the map reaches its capac-
ity, the algorithm simply deletes all items with counts below
a specified threshold from the map, creating space for new
items. The algorithm is motivated by the expectation that
frequent items will survive periodic deletions. Despite the
method’s simplicity, it has near optimal theoretical guaran-
tees for estimating heavy hitters with limited space [19].

2.4 The Need for Time Adaptive Sketches
In most applications that involve temporal data, most re-

cent trends tend to be most informative for predictive pur-
poses [18, 20]. For instance, in clickthrough predictions,
recent click history provides best estimates of future clicks
compared to logs from the more distant past. At the same
time, old heavy hitters (or old but significant trends) also
must be preserved, especially in the absence of more recent
frequent occurrences of an item. With limited space, we can
tolerate some error on counts of items in distant history,
but would like to obtain highly accurate counts for recently
seen items. While existing sketches, such as CMS and LC,
are very good in retaining accurate information about heavy
hitters, they do not take into account this temporal dispar-
ity in desired accuracy. It is possible to use straightforward
extensions (discussed later) to existing sketching techniques
to encode the temporal information; however, this results
in error guarantees that are independent of time, and not
adaptive to item recency. In this paper, we present adap-
tive variants of these sketches that achieve the desired time
adaptability. To the best of our knowledge, only one tech-
nique has been designed specifically to capture frequency
information over time, which we describe in the following:

2.5 Existing Method: Hokusai
In [20], the authors presented two modifications of CMS

for aggregating information over temporal data streams. The
first algorithm, referred to as time aggregation, aggregates
information only in dyadic time intervals, i.e., intervals of
the form [t2k + 1, ..., (t+ 1)2k]. However, this method does
not provide (item, time) estimation for individual items.
Moreover, in order to retain efficiency, the method incurs
deterministic over-counting which can make the errors un-
predictable. Hence, the focus of our comparison is on the

item aggregation algorithms (Algorithm 3 in [20]) proposed
for constructing time-adaptive sketches. This method pro-
vides general (item, time) estimation. Throughout this pa-
per we will refer the item aggregation algorithms of [20] as
the Hokusai (name of the paper) algorithm.

Hokusai uses a set of Count-Min sketches for different
time intervals, to estimate the counts of any item for a given
time or interval. To adapt the error rate temporally in lim-
ited space, the algorithm uses larger sketches for recent in-
tervals and sketches of smaller size for older intervals, as
illustrated in Figure 2. In a streaming setting, this setup
creates additional overhead of tracking time intervals and
shrinking the sketch size for older ones as time progresses.
To efficiently achieve such sketch shrinking, [20] utilize an
elegant insight: the size of count-min sketches can be halved
simply by adding one half of the sketch to the other half, as
shown in Algorithm 1. This operation also requires halving
the hash function ranges, which can be easily accomplished
using modulo 2 operation. Thus, it is possible to maintain
sketches of varying sizes as shown in Figure 2 and dynami-
cally adjust them as time progresses.
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Figure 2: Hokusai

Algorithm 1 Hokusai [20]

t← 0
while data arrives do

Receive data in Sketch M for this t (Modify M)
t← t+ 1
At = M (Copy)
for k = 1 to ⌊log2 t⌋ do
∀ i, j in sketch At−2k

At−2k [i, j] = At−2k [i, j] +At−2k [i, j + 2m−k]
Shrink to size 2m−k

end for
end while

2.6 Shortcomings of Hokusai
Because Count-Min sketch accuracy depends on size, with

Hokusai, we expect counts for recent time instances (that
use larger sketches) to be more accurate than counts corre-
sponding to older time intervals (that use smaller sketches).



Although this idea of having different-sized sketches for dif-
ferent time intervals is reasonable and yields accuracies that
are time-adaptive, it comes with several inherent shortcom-
ings which are summarized in the following subsections.

1. Discontinuity: Observe that in Algorithm 1, when-
ever t increments, we halve the size of sketches for log2 t time
instances. This abruptly doubles the errors for all items in
those time instances, and happens at every transition from t
to t+1. Even if the current time interval t is empty (or nearly
empty), i.e., we do not add anything to the data structure,
we still shrink sketches, unnecessarily reducing the accuracy
of count estimates for many items. For instance, in a tem-
poral stream, if the current time t has very few or no items,
we still double our errors for time interval t−1, as well as
many preceding it. This is undesirable and unnecessary, as
we show below. In practice, such burstiness in data streams
over time is very common, with some intervals adding many
more counts than others. Owing to this discontinuity, we
see oscillating accuracy over time with Hokusai. Ideally,
accuracy for past counts should decrease smoothly as more
items are included.

2. Too many sketches: We are keeping sketches for
all the time instances t ∈ {0, 1, 2, ..., T}. In practice, the
total time range T can be very large. If we keep sketches
for all time points up to T , we cannot avoid using O(T )
memory, even if most of these intervals are “empty” and not
associated with any items at all. When keeping time at a
fine granularity, the O(T ) memory requirement can be be-
come prohibitively expensive, making memory overhead of
O(log T ) highly desirable. If we force the total sketch size
to be O(log T ) while using the Hokusai approach, at least
T −O(log T ) time instances will have sketches of size zero,
with all information corresponding to them lost.

3. Inflexibility: Algorithm 1 is inflexible, as all t ∈
[t− 2i, t− 2i+1] use sketches of same size. With every time
step, the size reduction in sketches also happens by a fixed
amount which is half. With every transition of time from t
to t+1, Hokusai doubles the error for specific time instances.
There is not much flexibility in terms of the error distribu-
tion. Because we often do not know beforehand what error
distribution over time is needed, having error tolerance that
is flexible temporally would be very useful.

4. Overhead for shrinking: Whenever t increments,
we need to shrink log t sketches by half, which involves one
pass over all counters for those sketches.

Nonetheless, the key insight of Hokusai – shrinking sketch
size with time – is a natural solution for achieving time
adaptability. In subsequent sections, we demonstrate that
there is an alternative approach, formulated in Section 4,
that achieves time adaptability while rectifying the issues
summarized above.

3. CMS FOR TEMPORAL QUERIES
CMS is a widely popular technique for summarizing data

streams where typically we are interested in accurately esti-
mating the heavy hitters (or items with significant counts).
Before we describe our proposal, we argue that there is a
trivial modification of CMS using which we can keep track
of items over time without worrying about time adaptabil-

ity. Our time adaptive variants will then build upon this
modification.

We are interested in estimating the counts of items during
any specified interval of time. To use existing CMS (or even
LC) for such task, we can treat same items occurring in dif-
ferent time intervals as different items. In particular, we can
distinguish item i during time instance t from the same item
i during a different time instance t′. After this distinction,
we can keep track of all distinct items over time, N × T of
them, using the vanilla CMS (or LC). We need hash func-
tions that hash both time and item, i.e. our hash functions
will be

h1, h2, ..., hd : {1, 2, ..., N} × {0, 1, 2, ...., T} 7→ {1, 2, ..., w}.
Effectively, we only increase the total number of items. The
total number of items will be N × T which can be a very
large number, because both T and N are huge in practice.
Even space requirements of O(N) or O(T ) are prohibitive
and so handling N × T items is clearly still a concern.

Given the near optimality of the existing sketches, we can-
not hope to be able to decrease the errors for all items consis-
tently for all the time. However, there is a room for smartly
distributing the errors to achieve the desired time adaptabil-
ity described in the next section.

4. OUR PROPOSAL: TIME ADAPTIVE

SKETCHES (ADA-SKETCHES)
We present Adaptive Count-Min Sketch (Ada-CMS) and

Adaptive Lossy Counting (Ada-LS), which are time adaptive
variants of Count-Min Sketch (CMS) and Lossy Counting
(LC) respectively. The idea behind these adaptive sketches
is analogous to the widely popular noise reduction process
used in Dolby2 via pre-emphasis and de-emphasis.

4.1 Short Detour: Dolby Noise Reduction,
Pre-Emphasis and De-Emphasis

In Dolby systems, while recording the signal, a pre-emphasis
transformation is applied, which artificially inflates certain
frequencies in the signal relative to the tape’s overall noise
levels. This preserves the inflated signals with lesser distor-
tion while recording on the tape. During playback an op-
posite transformation de-emphasis is applied which reduces
back the inflated signals canceling the effect of artificial pre-
emphasis. In the process, noise is attenuated more sharply.
Please refer to [9, 24] for more details.
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Figure 3: Adaptive Sketching via Pre-emphasis and
De-emphasis analogous to Dolby Noise Reduction
Procedure

We exploit the fact that Count-Min Sketch (CMS) and
Lossy Counting (LS) have better accuracy for heavy hit-
ters as compared to the rest of the items. While updating

2http://en.wikipedia.org/wiki/Dolby noise-
reduction system



the sketch we apply pre-emphasis and artificially inflate the
counts of more recent items compared to older ones, i.e., we
make them heavier with respect to the older items. This is
done by multiplying the updates cti with f(t), which is any
monotonically increasing function of time t. Thus, instead
of updating the sketch with cti we update the sketch with
f(t) × cti. The tendency of the sketch is to preserve large
values. This inflation thus preserves the accuracy of recent
items, after artificial inflation, compared to the older ones.
While querying, we apply the de-emphasis process, where we
divide the results by f(t), to obtain the estimate of item i
at time instance t. The procedure is simple and summarized
in Figure 3. In this process, as we show later, the errors of
the recent counts are decreased more than the errors of the
older counts.

To understand why the pre-emphasis and de-emphasis de-
fined in previous paragraph works, consider the case of CMS
with only one hash function hk, i.e. d = 1 and only a one row
sketch as shown in Figure 4. The vanilla update procedure
is simply adding cti at location hk(i, t) for every increment
cti. During estimation of counts for item i in time interval t
we simply report the value of hk(i, t).
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Figure 4: Toy illustration of a collision after Pre-
emphasis

Now consider the case when we apply the artificial pre-
emphasis and later de-emphasis to cancel it. When there
are no collisions, just like the old sketches, we estimate the
counts cti exactly. Pre-emphasis and de-emphasis cancel each
other and have no effect. Errors occur when there are col-
lisions. For illustration, assume that hk(i, t) = hk(j, t

′), i.e.

both cti and ct
′

j collide and go to the same location. Suppose

we have t > t′. The estimate of both cti and ct
′

j using vanilla

CMS would be simply cti + ct
′

j because they both go to the
same location and we simply return the counter. Note, we
have only one row, and so the minimum is over one value.
For the adaptive variant, based on the pre-emphasis and de-
emphasis using a monotonic sequence f(t) the estimates of

cti and ct
′

j would be

ĉti =
f(t)cti + f(t′)ct

′

j

f(t)
= cti +

f(t′)

f(t)
ct

′

j

ĉt
′

j =
f(t)cti + f(t′)ct

′

j

f(t′)
= ct

′

j +
f(t)

f(t′)
cti.

Since t > t′, we will have f(t) > f(t′) because of mono-
tonicity of f(t) with respect to t. With vanilla CMS we

overestimate cji by ct
′

j whereas the overestimation after pre-

emphasis and de-emphasis is f(t′)
f(t)

ct
′

j which is strictly smaller

than ct
′

j . On the other hand, the error in ct
′

j is f(t)
f(t′)

cti which

is greater than cti, the error with vanilla CMS. Thus, when-
ever there is a collision, the recent items suffer less compared
to older items. This achieves the desired time adaptability
in errors, given the same amount of space. The whole idea
works for any sequence f(t) which is monotonic in t. We
now make this notion more rigorous.

4.2 Adaptive Count-Min Sketch (Ada-CMS)
Ada-CMS requires a monotonically increasing sequence
{f(t); t ≥ 0} for performing the pre-emphasis and de-emphasis.
Monotonicity implies f(t) ≥ f(t′)∀t > t′. Similar to CMS
we have a two dimensional cell with depth d and width w.
The overall procedure is summarized in Algorithm 2.

Algorithm 2 Adaptive Count-Min Sketch

Input: Any monotonic sequence {f(t); t ≥ 0}
w ← ⌈ e

ǫ
⌉

d← log 1
δ

M ← d× w array initialized to 0

Update cti
for j = 1 to d do

M(j, hj(i, t))←M(j, hj(i, t)) + f(t)cti
end for

Query for counts of item i during t

ĉti ← minj∈{1,2,...,d}
M(j,hj(i,t))

f(t)

return ĉti

Just like the vanilla CMS described in Section 3, we hash
both item and time simultaneously, i.e., our hash functions
are from the product of time and items to [1, w]. The up-
date and the query use the pre-emphasis and de-emphasis
as described in Section 4. Other than this simple modifica-
tion, the overall algorithm is same. Thus, clearly we have
no additional overhead. If we make f(t) = 1, then we re-
cover the vanilla CMS algorithm. Thus, Algorithm 2 is a
strict generalization of CMS. This simple modification, as
we show later, is very powerful and achieves the desired
functionality of time adaptability. Furthermore, as shown
in Section 4.2.3, we obtain many design choices, which can
be tailored for different applications.

4.2.1 Analysis

The analysis follows similar lines with the analysis of vanilla
CMS [7] except that we have to deal with the pre-emphasis
and de-emphasis factor f(t).

Theorem 1. For w = ⌈ e
ǫ
⌉ and d = log 1

δ
, given any (i, t)

we have

cti ≤ ĉti ≤ cti + ǫβt
√
MT

2

with probability 1 − δ. Here βt =

√

∑

T
t′=0

(f(t′))2

f(t)
is the time

adaptive factor monotonically decreasing with t.

Intuition Behind the Proof: We will start by analyz-
ing errors under just one hash function. Note, that if there
are no collisions, then the estimation is exact. Collisions
are bad events that cause errors (overestimation), but with
large enough values of w, random collisions have small prob-
ability. This small probability will make the expectations of



error small. Furthermore, repeating the process with d in-
dependent hash functions, and finding the best (minimum)
count among d repetitions of the experiment, will give the
required high probability of concentration.

Proof. Given i and t, define indicator variable I
t′

k,j as

I
t′

k,j =

{
1, if (i, t) 6= (j, t′) and hk(i, t) = hk(j, t

′)

0 otherwise
(1)

E[It
′

k,j ] = Pr
(
hk(i, t) = hk(j, t

′)
)
=

1

w
. (2)

Let us consider a single row estimate of cti corresponding to

hash function hk, i.e. row k, call it ĉtk,i.

ĉtk,i =
1

f(t)

[
f(t)cti +

[
T∑

t′=0

(
f(t′)×

N∑

j=1

I
t′

k,jc
t′

j

)]]
≥ cti.

(3)

ĉtk,i > cti is true for all k and hence also true for the mini-
mum. For the other side of the bound we have,

E[ĉtk,i − cti] =
1

f(t)
E

[
T∑

t′=0

(
f(t)×

N∑

j=1

I
t′

k,jc
t′

j

)]
(4)

=
1

f(t)

T∑

t′=0

(
f(t′)×

N∑

j=1

1

w
ct

′

j

)
− cti

w
(5)

≤ 1

wf(t)

T∑

t′=0

f(t′)Ct′ (6)

≤ 1

w




√∑T

t′=0(f(t
′))2

f(t)




√
MT

2 =
βt

w

√
MT

2

(7)

In getting Equation 5 we used linearity of expectation. Since

I
t
k,i = 0, it created a hanging term

cti
w
, dropping which gives

the next inequality instead of equality. The next step is
Cauchy-Schwartz and the definition ofMT

2 . From Markov’s
inequality we have:

Pr

(
ĉtk,i − cti ≥ ǫβt

√
MT

2

)
≤ 1

ǫ

1

w
≤ e (8)

Our final estimate is the minimum over d estimates which
are independent because of pairwise independence of hk. So

for the final estimate ĉti we have

Pr

(
ĉti − cti ≤ ǫβt

√
MT

2

)
≥ 1− ed = 1− δ. (9)

as required. The monotonicity of βt follows directly from
the monotonicity of f(t) in the denominator.

Remarks on Theorem 1: We can see that since βt is
monotonically decreasing the upper bound on errors, given
by Theorem 1, decreases as time t increases. Thus, for point
queries we obtain time adaptive error guarantees. For a
vanilla CMS sketch we can get the upper bound in terms
of the L1 norm (see [7] for details) which is simply the sum
Σt. Here, we get the upper bound in terms of weighted sum
(Equation 6) which is further upper bounded by

√
MT

2 due
to Cauchy-Schwartz inequality.

Dealing with Overflows: Due to artificial pre-emphasis,
it is possible that the counters in the sketch can overflow
sooner (particularly in the exponential) than vanilla CMS.
A simple way to deal with this occasional overflow is to
periodically divide all counters by a constant to keep the
overflow under control. If we know beforehand a safe con-
stant to divide by, we can always divide even before adding
elements to the sketch. During estimation we can multiply
the outputs by those known constants.

Before we look into choices of f(t) and start contrasting
Ada-CMS with standard CMS for time adaptive data sum-
marization, we emphasize why Ada-CMS is free from the
set of shortcomings, inherent to Hokusai, described in Sec-
tion 2.6.

4.2.2 Advantages of Ada-CMS over Hokusai

Since Ada-CMS only keeps one sketch and use pre-emphasis
and de-emphasis to achieve time adaptability we automati-
cally get rid of the first problem mentioned in Section 2.6.
If certain time interval t is empty then there is no addition
to the Ada-CMS sketch. Therefore, there are no extra col-
lisions. The previous counters and hence their accuracies
are unchanged. We do not have any shrinking overhead.
The update and the estimation complexity of Ada-CMS is
exactly same as that of CMS.

As argued in Section 3, we are dealing with N×T distinct
items. The error guarantee shown in Theorem 1 holds for
any point query with probability 1−δ. To ensure this upper
bound for all N × T items with probability 1 − δ, we need
to choose d = log NT

δ
instead of log 1

δ
and further take the

union bound. Thus, with Ada-CMS we only need

dw = O(
e

ǫ
× log

NT

δ
) = O

(
(logN + log T − log δ)

ǫ

)

space to answer all possible point queries with provable time
adaptive guarantees. On the other hand, Hokusai needs one
sketch for every time instance t making it scale linearly with
time O(T ), which is prohibitively expensive in practice.

We will further see in the next Section that we can handle
a variety of design choices by exploiting the flexibility that
we have in choosing the monotonic sequence f(t). Later
during evaluation, in Section 6, we will observe that the
errors of Ada-CMS are smooth over time unlike Hokusai
which abruptly changes errors over time.

4.2.3 Comparison with Vanilla Count-Min Sketch and
Design Choices

Our aim is to distribute errors more smartly than CMS
which has no information about time. In particular, we want
errors for the recent counts to be very accurate while for
the older counts we are ready to tolerate extra errors. In
this section, we show that by appropriately choosing the
sequence f(t) we can obtain a variety of error distributions.

One major question that we are interested in is “Given a
fixed space and current state of time T , what are the values
of time t ≤ T where Ada-CMS is more accurate than vanilla
CMS ?” We know that if we put f(t) = 1 for all t in Ada-
CMS, then we recover the vanilla CMS algorithm. This
observation comes handy for theoretical comparisons and
leads to the following corollary:

Corollary 1. For same w and d, the expected error in
cti with Ada-CMS is less than the expected error of Vanilla



CMS if and only if

T∑

t′=0

f(t′)

f(t)
Ct′ ≤

T∑

t′=0

Ct′ (10)

Proof. Immediate from combining Equation 5 with the
fact that the final estimate is simply the minimum.

Due to the monotonicity of f(t) the condition is always true
for t = T . For t < T , the left hand term is weighted sum

and f(t′)
f(t)

< 1 ∀t′ < t. Thus, for t close to T the left hand

side is likely to be smaller.
To get a sense of quantifications, a convenient way for

comparison is to compare the upper bounds i.e., βt. For
Vanilla CMS we simply substitute f(t) = 1 and get βt =√
T . Therefore, for all time instance ≥ t such that

√∑T

t′=0(f(t
′))2

f(t)
≤
√
T or

∑T

t′=0(f(t
′))2

T
≤ (f(t))2 (11)

we get a better upper bound on errors with Ada-CMS for cti
compared to vanilla CMS. For instance, if we choose f(t) =
t+ 1 the above condition becomes

t ≥
√

(T + 1)(2T + 1)

6
≥

√
1

3
T ≃ 0.57T (12)

Thus, for recent half of the time we are more accurate than
vanilla CMS.

Another interesting choice is exponential, i.e. f(t) = at

for some a > 1. With this we achieve better accuracy than
CMS for all (assuming aT+1 ≫ 1)

t ≥
log aT+1−1

(a−1)T

2 log a
≃ T + 1

2
− log T + log (a− 1)

2 log a
(13)

We can achieve finer control by more complicated choices
of f(t). To illustrate a reasonable scenario, suppose we want
the errors with Ada-CMS to be never off by a factor γ away
from that of vanilla CMS ∀ t. This ensures that we guarantee
accuracy within factor γ of what the original CMS would
achieve to even very old heavy hitters. In addition, we want
to be more accurate than CMS on all recent time t > K, for
some desirable choice of K. Note that βt =

√
T for CMS.

All these can be translated into the following constraints

βt ≤ γ
√
T ∀t > 0 and βt ≤

√
T ∀t > K. (14)

Because βt is monotonically decreasing, the above condition
is also satisfied if

β0 = γ
√
T ; βK =

√
T or

∑T

t′=0(f(t
′))2

T
= γ2(f(0))2;

∑T

t′=0(f(t
′))2

T
= (f(K))2

To simplify let us choose f(t) =
√
at2 + bt+ 1, and after

expansion we are left with the following system of simulta-
neous equation for a and b.

a

[
1

6
(T + 1)(2T + 1)

]
+ b

[
1

2
(T + 1)

]
= γ2 − 1 (15)

a

[
1

6
(T + 1)(2T + 1)−K2

]
+ b

[
1

2
(T + 1)−K

]
= 0 (16)

This system leads to the following choice of a and b

a =
(γ2 − 1)(B −K)

K(BK −A)
; b =

(γ2 − 1)(A−K2)

K(A−BK)
(17)

A =
(T + 1)(2T + 1)

6
; B =

T + 1

2
(18)

We require one more condition that at2+bt+1 > 0, which
is always true if a > 0 and b > 0. These two conditions is

satisfied if γ > 1 and
√

(T+1)(2T+1)
6

> K > T+1
2

. γ > 1

is a very natural condition because γ < 1 would mean that
we are universally better, than vanilla CMS for all time t.
We cannot hope to achieve that, given the near optimality
of CMS sketches.

Some Remarks: We have shown that there is signifi-
cant room of distributing the errors in CMS more smartly
using the idea of pre-emphasis and de-emphasis. The flexi-
bility in engineering the monotonic sequence f(t) makes it
applicable to a wide variety of situation at hand. The choice
of pre-emphasis and de-emphasis transformations along with
the sketching parameters, thus, unifies the trade-off between
memory, accuracy and “time adaptability” in a single gener-
alized framework, which is very exciting.

Here, we have focused on giving importance to the more
recent time interval t. The idea of pre-emphasis and de-
emphasis is more general and not just limited to time. For
instance, if we want to estimate more accurately a set of
items coming from some important source, the idea of pre-
emphasis and de-emphasis is naturally applicable, as well.

4.2.4 Extension to Other Popular Sketches

There are two major variants of CMS in literature: (i)
CMS with conservative updates [11] and (ii) CMS with skip-
ping [3]. These two variants can be naturally extended with
the idea of pre-emphasis and de-emphasis. Count Sketches [6]
which predate CMS is another popular algorithm in prac-
tice and it is very much similar in nature to CMS. The idea
of pre-emphasis and de-emphasis is directly applicable to
Count Sketches as well for obtaining adaptive error guaran-
tees. The details and analysis is analogous to Ada-CMS and
so we do not repeat them here. To demonstrate the gener-
ality of pre-emphasis and de-emphasis idea, we provide time
adaptive variant of Lossy Counting (LC) which is a very
popular deterministic algorithm for counting heavy hitters,
and it is very different in nature from CMS.

4.3 Adaptive Lossy Counting (Ada-LC)
In line with Ada-CMS we can use pre-emphasis and de-

emphasis idea to obtain an adaptive variant of the popular
lossy counting (LC) algorithm. Ada-LC, just like vanilla LC,
needs one map M of size l. To perform pre-emphasis and
de-emphasis, for obtaining adaptability over time, we again
need a monotonically increasing sequence f(t).

Just like Ada-CMS, before adding an element cti to the
map we multiply it by f(t). If the map is full then we remove
the minimum element from the map to create space. While
estimating cti, we just report the count of the element in the
map divided by f(t) (de-emphasis). The overall procedure
is summarized in Algorithm 3. A more practical algorithm
is to delete all elements which are less than minimum plus
some predefined threshold.



Algorithm 3 Adaptive Lossy Counting

Requirement: Any monotonic sequence {f(t); t ≥ 0}
l← ⌈ 1

ǫ
⌉

M ← Empty
min← 0

Update cti
M [(i, t)]←M [(i, t)] + f(t)cti
if M is Full then

min = mina∈MM [a]
for a ∈M do

if M [a] = min then
Delete M[a]

end if
end for

end if

Query for counts of item i during t
if M contains (i, t) then

return ĉti =
M [(i,t)]

f(t)

else
return 0

end if

4.3.1 Analysis

The intuition why pre-emphasis and de-emphasis work for
Ada-LC is easy to see. Since recent counts are inflated dur-
ing pre-emphasis they are unlikely to be deleted compared to
the older counts and hence their values are preserved more
accurately in the map. This simple idea is also amenable to
analysis and gives provable time adaptive error bounds.

Unlike the Ada-CMS, Ada-LC is deterministic and so the
analysis does not involve probability.

Theorem 2. If l = ⌈ 1
ǫ
⌉ then the Ada-LC returns an es-

timate ĉti such that

cti ≥ ĉti ≥ cti − ǫβt
√
MT

2

where βt =

√

∑

T
t′=0

(f(t′))2

f(t)
is the time adaptive factor and it

is same as in Theorem 1.

Proof. The total amount of increment to M is all items
in the stream along with the pre-emphasis

∑T

t=0 f(t)C
t. Let

mini,t be the minimum value after the insertion of cti. Then
in the worst case all counters can be mini,t and we decre-
ment l×mini,t in this iteration. Thus, the maximum possi-

ble total decrement is l
∑T

t=0

∑N

i=1 mini,t. Since, the total
decrement is less than the total increment we have

T∑

t=0

f(t)Ct − l

T∑

t=0

N∑

i=1

mini,t ≥ 0 or

T∑

t=0

N∑

i=1

mini,t ≤
1

l

T∑

t=0

f(t)Ct ≤ ǫ



√√√√

T∑

t′=0

(f(t′))2




√
MT

2

The last step is Cauchy-Schwartz. Thus, every counter has

decreased by at most ǫ

(√∑T

t′=0(f(t
′))2

)√
MT

2 . Since we

always decrement any count in the map and increment cti as

f(t)cTi , we have

f(t)cti ≥M [(i, t)] ≥ f(t)cti − ǫ



√√√√

T∑

t′=0

(f(t′))2




√
MT

2

Dividing by f(t) leads to the desired expression.

Since the error bound has the time adaptive expression
equal to ǫβt

√
MT

2 which is same as the expression for the
Ada-CMS, we can directly borrow all the design choices
shown in Section 4.2.3 for choosing f(t).

5. RANGE QUERIES
In practice, we are typically interested in range queries

over time. For example, count-based features are common
in click-through rate prediction, such as counts of clicks in

past 24 hours on a given ad. Define c
[ti,t2]
i to be the count of

item i during any specified time interval [t1, t2]. One naive
estimate of this range query is simply the sum of all point
estimates leading to a crude estimator:

̂
c
[t1,t2]
i =

t2∑

t=t1

ĉti (19)

An obvious problem with this estimator is that the summa-
tion involves too many terms. The errors grow linearly with
the length of the interval.

A well know solution [7] is to store multiple sketches for
different size of dyadic intervals. The idea is to keep log T
sketches, one each for the intervals of the form [t2k+1, ..., (t+
1)2k] (of size 2k) with k = 0, 1, ..., log T . When k = 0 this
consists of the usual sketch for every time instance t or the
interval [t, t], when k = 1, these sketches keep estimates of
two consecutive time intervals [t, t+ 1], etc. The key obser-
vation, made in [7], is that any interval [t1, t2] can be decom-
posed as a sum of at most 2 log T dyadic intervals. For in-
stance interval [10, 20] can be decomposed into union of four
disjoint dyadic intervals [10, 10], [11, 12], [13, 16], [17, 20].

Thus, to estimate c
[10,20]
i , we only need 4 point queries com-

pared to 11 with the crude estimator given by equation 19.
The errors in the worst case grow as O(log T ) instead of
linearly in the length of the interval (or range). The price
that we pay in terms of time and memory, for answering
any range query, is an increase of a factor of O(log T ). The
overall complexity is still logarithmic in both total time T
and total items N .

The idea of pre-emphasis and de-emphasis for range queries
is quite straightforward except for one subtlety. We need to
keep log T different adaptive sketches, one for each type of
dyadic range, and use the same idea of decomposing ranges
into at most 2 log T intervals. However, we need to ensure
that every time instance t ∈ [t2k+1, ..., (t+1)2k], for sketches
corresponding to this type of dyadic interval, gets the same
pre-emphasis and later de-emphasis. For example, if we are
keeping sketches to count intervals of size 2, i.e. of the form
[2t+ 1, 2t+ 2], we have to give same pre-emphasis to 2t+ 1
and 2t+ 2. This is because we cannot have a well defined
de-emphasis for recovering c

[2t+1,2t+2]
i = c2t+1

i + c2t+2
i from

f(2t+1)c2t+1
i + f(2t+2)c2t+2

i unless f(2t+1) = f(2t+2).
Implementation wise this is very simple: we only need to
make 2t + 1 and 2t + 2 indistinguishable by changing t to
t′ = ⌈t/2⌉ (in general t′ = ⌈t/2i⌉ for sketches corresponding
to dyadic interval [t2i + 1, ..., (t+ 1)2i]).



5.1 Analysis
We focus our analysis on range queries with Ada-CMS, a

very similar analysis applies to Ada-LC.
Define tk = ⌈ t

2k
⌉. With this distinction, all t ∈ [t2k +

1, ..., (t + 1)2k] have can be denoted by the same value tk.
We keep one Ada-CMS sketch for intervals of form [t2k +
1, ..., (t+1)2k] (of size 2k) with k = 0, 1, ..., log T . The point

queries for this sketch ct
k

i directly give the count of interval
[t2k + 1, ..., (t+ 1)2k]. With slight abuse of notation we will
also use tk = [t2k +1, (t+1)2k] to denote any dyadic range.

With a similar line of analysis as Theorem 1 it can be
shown that if w = ⌈ e

ǫ
⌉ and d = log 1

δ
, then with probability

1− δ the following holds, for a sketch corresponding to any
dyadic range of the form [t2k + 1, ..., (t+ 1)2k]:

ct
k

i ≤ ĉt
k

i ≤ ct
k

i + ǫβtk
√
MT

2 , (20)

where

βtk =

√∑T

t=0(f(t))
2

f(tk)
=

√∑⌈ T

2k
⌉

t=0 2k(f(tk))2

f(tk)
(21)

is a monotonically decreasing function of tk.

Let I
[t1,t2]
dyd be the set of all dyadic intervals that are con-

tained in [t1, t2]. Formally,

I
[t1,t2]
dyd = {[x, y] : [x, y] ⊆ [t1, t2] & [x, y] = [t2k + 1, (t+ 1)2k]}

(22)

for some t ∈ Z and k ∈ {0, 1, ..., log T}.
We now define

B[t1,t2] = max
tk∈I

[t1,t2]
dyd

βtk . (23)

Figure 5: Frequency of items observed over the en-
tire stream. The trends clearly depicts a power law
as expected in real environments. The x-axis display
items grouped by Matlab’s tabulate function.

With this B[t1,t2] we have the following:

Theorem 3. Given w = ⌈ e
ǫ
⌉ and d = log 1

δ
, then with

probability 1− δ we have for any given range [t1, t2]

c
[t1,t2]
i ≤ ̂

c
[t1,t2]
i ≤ c

[t1,t2]
i + 2ǫB[t1,t2]

√
MT

2 log T (24)

Proof. The proof follows from the fact that any interval
[t1, t2] can be written as union of at most 2 log T disjoint
dyadic intervals. For each of those dyadic intervals tk we
must have tk ⊆ [t1, t2]. The error for estimating that dyadic

range is upper bounded by ǫβtk
√
MT

2 ≤ ǫB[t1,t2]
√
MT

2 .

This follows from the definition of B[t1,t2]. The lower bound
is trivial because we always overestimate.

Remarks: The factor of log T appears in the upper
bound along with some constants. This is analogous to up-
per bounds for range queries with vanilla CMS [7].

6. EXPERIMENTAL EVALUATION
Code: Algorithms were implemented in C#, with all ex-

periments performed on an Intel Xeon 3.10 GHz CPU.

Datasets: Two real-world streaming datasets were used,
AOL and Criteo, covering two important applications: on-
line search and advertisement.

AOL: AOL query logs consist of 36 million search queries
collected from 650 thousand users over 3 months. The dataset
is comprised of search queries with associated timestamps,
containing 3.8 million unique terms.

Criteo: Criteo conversions dataset contains feature val-
ues and conversion feedback for clicked display ads sampled
over a two-month period [5]. Every ad is associated with
a timestamp and 9 categorical terms hashed for anonymity,
for a total of 150k unique hashed categorical terms.

Figure 5 plots the frequency of terms for both datasets in
decreasing order on log-log scale. We use the Matlab tabu-
late function, which automatically computes the frequency
and groups the plots. The plots reveal the power-law phe-
nomenon common among real-world frequency distributions.
An important problem in a variety of real applications is to
keep track of the counts of important terms over time, in a
streaming setting under a memory budget.

In these experiments, we focus on time adaptability : meth-
ods are compared by their accuracy on more recent counts,
while we expect them to permit higher error rates for counts
in distant past.

Competing Methodologies: Count-min sketching (CMS)
is a widely popular algorithm in industrial practice. Our aim
is to evaluate the effects of pre-emphasis and de-emphasis
on CMS and compare it with Hokusai [20] algorithm that
aims to make error rates time-adaptive. Since Hokusai is
also built on CMS, we focus our comparison on the novel
variants of CMS proposed in this paper. We omit compar-
isons to Lossy Counting in this section because, unlike CMS
and Hokusai, it is deterministic, slow, and difficult to paral-
lelize, due to the repeated linear-space-complexity creation
step that executes every time when the map is full (see Al-
gorithm 3 and Section 6.2). Therefore, for clarity, we defer
the comparisons of Lossy Counting to its adaptive variants
to Appendix C.

For comparisons, we keep track of all discrete items of
interest (3.8 million in case of AOL and 150k for Criteo) over
time using the following variants of CMS sketching schemes:

1. Hokusai: this algorithm was proposed in [20] for time-
adaptive counting, based on CMS of different sizes for
each time instance, described in Algorithm 1 and Sec-
tion 2.5.
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Figure 6: Average absolute error over time for different sketching scheme with varying sizes of range w
(memory). A value of d = 4, (also used in [20]), was fixed in all the experiments. We ensured that all
algorithms take exactly the same amount of memory while comparisons. CMS does not have any time
adaptability. Hokusai keeps different sketches for all time intervals and therefore the error fluctuates. For
smaller w (w ≤ 212), Hokusai does not have enough sketches for all t. Both variants of Ada-CMS show the
desired time adaptability, validating our claims, and is significantly better than Hokusai.
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Figure 7: Standard deviation of errors for w = 218.

2. CMS: the basic CMS with the modification described
in Section 3. Because it is not time-adaptive, it will
serve as a baseline for the other algorithms.

3. Ada-CMS (lin): the proposed adaptive variant of
CMS with pre-emphasis and de-emphasis using lin-
early increasing sequence f(t) = a × t for a fixed a.
Please see Algorithm 2 and Section 4.2 for more de-
tails. All experiments used a = 0.5.

4. Ada-CMS (exp): the proposed adapative variant of
CMS with pre-emphasis and de-emphasis using expo-
nentially increasing sequence f(t) = at for a fixed a.
All experiments used a = 1.0015.

We use time granularity of one hour, thus each time in-
stance t covers an hour of data. This yields around 2000
time instances for the AOL dataset, and around 1000 time
instances for Criteo. We use the four competing algorithms
to summarize the datasets. For AOL consisting of 3.8 mil-
lion terms over more than 2000 time instances, the effective
number of items is around 3.8M × 2000 ≃ 8× 109 which is
a reasonably big number. For Criteo, the effective number
of items is around 150k × 1000 ≃ 1.5× 108.

6.1 Accuracy-Memory Trade-off
Approximate counting algorithms provide a trade-off be-

tween estimation accuracy and the amount of space used. A
superior algorithm provides a better tradeoff between accu-
racy and memory. Therefore, we compare the accuracies of
all the algorithms for a fixed amount of space.

In the experiments, we kept the sketch depth of d = 4
fixed, following the setup used in [20]. This choice fixes the
value of probability guarantee 1 − δ to a constant value of
1− 1

ed
for all the four sketching schemes. To see the effect of

variations on the sketch sizes, we varied the value of sketch
width w in {210, 211, ..., 223}. For Hokusai, we chose the
sketch size for each time instance so that the total amount
of memory (the total size of all sketches) is exactly the same
as the amount of memory used by the other algorithms. To
ensure reasonable estimate quality, we verified that every
time instance gets sketch size of w ≥ 4, otherwise it simply
returns the sum of stream over that time period. In some
cases, (w ≤ 12 for AOL and w ≤ 11 for Criteo) we cannot
have enough sketches, of any reasonable size, for all time
spans. For such cases, we only report time instances for
which Hokusai can make predictions. This is one of the
shortcomings of Hokusai in that it requires a large number
of sketches to keep track of all time instances because it
needs one sketch for each of them.

In real settings, we are interested in estimates for items
with high counts. For generating queries, we chose the top
1000 terms from both datasets based on their frequencies
over the entire stream as items of interest. We then estimate
the counts of these 1000 items for all the time intervals (2000
for AOL and 1000 for Criteo) by issuing point queries to the
sketches. We compare the estimates of these counts with
the true (gold standard) counts. The plot of the mean abso-
lute error, of 1000 frequent items, over time for all the four
competing schemes, is shown in Figure 6. We only highlight
w = {210, 211, 212, 218, 220, 223} to illustrate accuracy
trends for high memory (218−23), as well as for low memory
(210−12) regions. It should be noted that each of the plots
shows accuracy for a given, fixed amount of memory for all
the algorithms. In addition, we also illustrate the statistical
significance of these numbers by showing the standard devi-
ation of error estimates over time for w = 218 for both the
datasets in figure 7. The standard deviation plots for other
values of w exhibit analogous behavior.

Observations: the plots clearly show that the errors
(both mean and standard deviation) for Hokusai fluctu-
ate with time, producing significantly worse estimtes than
the alternative sketches for both datasets. The fluctuations
are expected because Hokusai keeps different CMS sketches
for each time instance. Such fluctuations were also observed
in [20]. It is known than the accuracy of CMS decreases with
the total number of items added to the sketch. Therefore,
for a busy time interval we can expect bad accuracy com-
pared to non-busy intervals, leading to fluctuation in errors
over time. With limited space w ≤ 212, it is not possible to
keep any reasonable sized sketch for all time intervals. For
instance, when w = 210 ≤ T ≃ 2000, we cannot allocate
any reasonable memory for all the time intervals. For such
cases, we only report the time intervals we can track with
Hokusai. Therefore, for those cases (w < 212), we do not
see any values with Hokusai for all time instances t.

Baseline CMS does not provide any time adaptability,
thus its error rates stay constant over time as expected. In
contrast, theAda-CMS results clearly demonstrate the time
adaptive behavior for both mean and standard deviation.
For recent time intervals, it is significantly more accurate
compared to CMS and thereafter errors grow smoothly with
decrease in time. Since CMS and Ada-CMS has only one



sketch, we do not see the undesirable fluctuations in the
errors observed with Hokusai.

The difference between Ada-CMS (lin) and Ada-CMS

(exp) clearly demonstrates the effect of choosing different
forms for f(t). With Ada-CMS (exp), the errors for the
recent time intervals are better than those of Ada-CMS

(lin) but grow faster than Ada-CMS (lin) with time on both
the datasets. This clearly demonstrates that, in addition to
time adaptability of errors, we have control over the rate of
growth of errors over time. We have only shown linear and
exponentially increasing sequences for demonstration, but
can obtain a whole spectrum of errors by choosing various
forms of f(t). Irrespective of the growth rate, the errors
and standard deviations with Ada-CMS are significantly
less those of Hokusai for all experiments.

As we double the memory provided to the algorithms, the
errors halve as expected. It is clear that with more memory
the algorithms become more accurate, but Ada-CMS re-
tains advantage over Hokusai, demonstrating a consistent
trend. CMS and its variants are almost exact for w = 223,
whereas Hokusai loses accuracy, especially for older counts.

6.2 Performance Comparisons
One of the major concern with Hokusai, as mentioned in

Section 2.6, is the overhead of the shrinking operations. Not
only does (the item aggregation scheme of) Hokusai requires
one Count-min Sketch At for every time instance t but every
transition of time from t to t+1 requires halving the size of
log t many sketches. The halving of a sketch At requires a
linear scan of all the cells in At, leading to poor scaling of
Hokusai with the growing sketch sizes.
In this section, we compare the computational overheads

of inserting streaming data into the sketches. Table 1 and
Table 2 summarize the average running time, in seconds,
of insertion for the AOL and Criteo datasets, respectively,
using different sketching schemes. The averages are taken
over 10 independent runs. Lower times indicate faster pro-
cessing rate (throughput) of the sketching scheme. To fur-
ther illustrate the effect of memory consumption (sketch
size), we performed independent experiments with varying
memory sizes. Results are shown for sketch widths w =
{220, 222, 225, 227, 230}.
The results reveal how slow Lossy Counting (LC) is in

general. To create space for the incoming items, once the
map gets full, low-count elements must be purged; if we only
remove the minimum element as suggested by the classical
algorithm, then the algorithm insertion does not even finish
in 2 -3 days. We therefore implemented a more practical
version, in which, once the map gets full, we remove the
items having smallest 10% of counts from the map. With
this modification, LC and Ada-LC run in reasonable time.
The numbers clearly show the poor scalability of Hokusai

with increasing sketch size. As the sketches increase, shrink-
ing overhead in Hokusai with every increment in t makes the
algorithm extremely slow. In contrast, for CMS and Ada-

CMS, increases in sketch size have negligible affect on the
processing time, which is not surprising given that the sketch
size has no effect on the insertion time of the algorithm.
LC and its adaptive variants shows the opposite trend.

LC and Ada-LC are deterministic algorithms (no hashing is
used) that are hard to parallelize. When memory is reduced,
the map quickly runs out of space and requires removal of
smaller elements, a linear time operation. Therefore, under

Table 1: Time (seconds) of summarizing the full
AOL dataset using the respective sketches of dif-
ferent widths w. The numbers are averaged over 10
independent runs. Lower time indicates faster pro-
cessing rate (throughput) of the sketching scheme.

2ˆ20 2ˆ22 2ˆ25 2ˆ27 2ˆ30
CMS 44.62 44.80 48.40 50.81 52.67
Hoku 68.46 94.07 360.23 1206.71 9244.17

ACMS lin 44.57 44.62 49.95 52.21 52.87
ACMS exp 68.32 73.96 76.23 82.73 76.82

LC 1334.843 578.70 268.67 267.48 253.40
ALC lin 3184.40 1576.46 326.23 289.54 284.09
ALC exp 1789.07 955.29 286.50 283.14 272.98

Table 2: Time (seconds) of summarizing the full
Criteo dataset using sketches of different widths
w. The numbers are averaged over 10 independent
runs. Lower time indicates faster processing rate
(throughput) of the sketching scheme.

2ˆ20 2ˆ22 2ˆ25 2ˆ27 2ˆ30
CMS 40.79 42.29 45.81 45.92 46.17
Hoku 55.19 90.32 335.04 1134.07 8522.12

ACMS lin 39.07 42.00 44.54 45.32 46.24
ACMS exp 69.21 69.31 71.23 72.01 72.85

LC 794.45 415.15 393.27 390.15 385.85
ALC lin 3074.51 1472.34 432.14 398.21 393.10
ALC exp 1291.82 821.27 388.06 372.15 365.18

smaller memory budget, LC and Ada-LC are very slow. As
the memory increases, space creation is less frequent, and
LC and Ada-LC exhibit faster running times.

CMS is popular in practice due its ease, parallelization
and small overhead. All these properties are mimicked by
the Ada-CMS variants proposed in the paper, which are
strict generalization of CMS. By performing time-adapative
sketching via pre-emphasis and de-emphasis, Ada-CMS avoids
the overheads of Hokusai, and yields significant improve-
ments in ability to trade off accuracy and memory, as shown
in Section 6.1.

7. CONCLUSIONS
We found a mathematical opportunity that makes two

widely popular sketching techniques temporally adaptive,
thereby making them more suitable for massive data streams
with drift over time. Our proposed technique, Ada-sketch,
provides time-adaptive sketching that integrates the power-
ful idea of pre-emphasis and de-emphasis of with existing
sketching techniques. As a result, we obtain strict general-
ization of classic sketching algorithms, unifying the trade-off
between memory, accuracy and time adaptability in a single
framework. This generalization comes with no additional
overhead, and our proposal is simple to implement.

The proposed integration of sketches with pre-emphasis
and de-emphasis, as we demonstrate, posseses strong theo-
retical guarantees on errors over time. Experiments on real
datasets support our theoretical findings and show signifi-
cantly superior accuracy and runtime overhead compared to
the recently proposed Hokusai algorithm. We hope that our
proposal will be adopted in practice, and it will lead to fur-
ther exploration of the pre-emphasis and de-emphasis idea
for solving massive data stream problems.



8. REFERENCES
[1] N. Alon, Y. Matias, and M. Szegedy. The space

complexity of approximating the frequency moments.
In Proceedings of the twenty-eighth annual ACM
symposium on Theory of computing, pages 20–29.
ACM, 1996.

[2] B. Babcock, S. Babu, M. Datar, R. Motwani, and
J. Widom. Models and issues in data stream systems.
In Proceedings of the twenty-first ACM
SIGMOD-SIGACT-SIGART symposium on Principles
of database systems, 2002.

[3] S. Bhattacharyya, A. Madeira, S. Muthukrishnan, and
T. Ye. How to scalably and accurately skip past
streams. In Data Engineering Workshop, 2007 IEEE
23rd International Conference on, pages 654–663.
IEEE, 2007.

[4] B. H. Bloom. Space/time trade-offs in hash coding
with allowable errors. Communications of the ACM,
13(7):422–426, 1970.

[5] O. Chapelle. Modeling delayed feedback in display
advertising. In Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and
data mining, pages 1097–1105. ACM, 2014.

[6] M. Charikar, K. Chen, and M. Farach-Colton. Finding
frequent items in data streams. In Automata,
Languages and Programming, pages 693–703. Springer,
2002.

[7] G. Cormode and S. Muthukrishnan. An improved
data stream summary: the count-min sketch and its
applications. Journal of Algorithms, 55(1):58–75, 2005.

[8] G. Cormode, S. Tirthapura, and B. Xu. Time-decayed
correlated aggregates over data streams. Statistical
Analysis and Data Mining: The ASA Data Science
Journal, 2(5-6):294–310, 2009.

[9] R. Dolby. Noise reduction systems, Nov. 5 1974. US
Patent 3,846,719.

[10] C. Estan and G. Varghese. Data streaming in
computer networking.

[11] C. Estan and G. Varghese. New directions in traffic
measurement and accounting, volume 32. ACM, 2002.

[12] P. Flajolet and G. N. Martin. Probabilistic counting
algorithms for data base applications. Journal of
computer and system sciences, 31(2):182–209, 1985.

[13] P. B. Gibbons and Y. Matias. Synopsis data
structures for massive data sets.

[14] A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and
M. Strauss. Surfing wavelets on streams: One-pass
summaries for approximate aggregate queries. In
VLDB, volume 1, pages 79–88, 2001.

[15] T. Graepel, J. Q. Candela, T. Borchert, and
R. Herbrich. Web-scale bayesian click-through rate
prediction for sponsored search advertising in
microsoft’s bing search engine. In Proceedings of the
27th International Conference on Machine Learning
(ICML-10), pages 13–20, 2010.

[16] D. Hillard, S. Schroedl, E. Manavoglu, H. Raghavan,
and C. Leggetter. Improving ad relevance in sponsored
search. In Proceedings of the third ACM international
conference on Web search and data mining, pages
361–370. ACM, 2010.

[17] O. Kennedy, C. Koch, and A. Demers. Dynamic
approaches to in-network aggregation. In Data

Engineering, 2009. ICDE’09. IEEE 25th International
Conference on, pages 1331–1334. IEEE, 2009.
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APPENDIX

A. RECONSTRUCTION EXPERIMENTS
In response to reviewer’s feedback we will demonstrate the

ability of Ada-CMS to preserve a signal in this section and
use of Ada-CMS sketches for the reconstruction of time se-
ries. We use the same sketches used to summarize the whole
AOL and Criteo dataset from the Experiments in Section 6.
For illustration, we summarize the whole dataset using Ada-
CMS with w = 221 and then reconstruct the counts of top
3 heavy hitter over time. We plot the actual counts and the
estimated counts for both the dataset in Figure 8. We can
clearly see that the two plots, despite burstiness, are almost
indistinguishable from each other, showing near perfect re-
construction.

B. EVALUATION OF RANGE QUERIES
In this section we evaluate the four sketching schemes for

estimating the counts over a range of given time interval

c
[t1,t2]
i as described in Section 5. We use the dyadic in-
terval idea to decompose any given range [t1, t2] into at
most 2 log T point queries. We need to store log T differ-
ent sketches for answering range queries. We used the same
values of parameters as before. From the previous section,
we knew that small w is not sufficient for Hokusai to keep
track of all time intervals. Therefore we only varied w in
{213, 214, ..., 220}. Given a fixed value of w, we ensured
that the total memory used by any of the four algorithms is
same to ensure fair comparisons.

We again chose the same top 1000 frequent terms, used for
point query experiments, as items of interest. This time we
are interested in keeping track of the counts of terms per day
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Figure 8: Actual and reconstructed counts of top 3 heavy hitters (HH) over time for both the datasets. The
plots almost overlap.

for over 80 days with AOL and around 40 days with Criteo.
We again set the time granularity of one hour, thus every
t denotes an hour. So for estimating the counts of a given
day, we are estimating intervals of size 24. We computed
the gold standard error and plot the mean absolute error
of the estimates returned by the four sketching schemes of
interest. The mean was taken over the chosen 1000 terms
of interest. The result is summarized in Figure 9. The er-
rors with Hokusai are significantly higher than the errors
of all other techniques, making it difficult to visualize the
difference between CMS and Ada-CMS in the same graph;
therefore we show the results of CMS and Ada-CMS in a
separate Figure 10 to make the difference more visible.

Observations: We can clearly see that the errors with
Hokusai are significantly worse with range queries compared
to CMS and Ada-CMS on both the datasets. This is ex-
pected because range query estimate is sum of many point
query estimates. Therefore, the errors add up. We know
from the previous section that Hokusai is worse for point
queries and this difference blows up for range queries. Ada-
CMS again, as expected, shows the adaptive behavior, which
clearly supports our claims. Also, we have the additional op-
tion to choose different f(t) for different dyadic ranges but
to keep things simple we only use the same values of f(t), as
used for point queries, in this experiment for all the sketches.

We can see that there are small fluctuations with CMS
and Ada-CMS for range queries. It should be noted that
the upper bounds shown in Theorem 3 comes from the fact
that every interval can be decomposed into at most 2 log T
dyadic intervals. The term 2 log T is the worst case and in
many cases it is less, depending on the interval itself. For ex-
ample, the intervals of size 10 [9, 18] can be decomposed into
just two dyadic ranges [9, 16] and [17, 18], whereas [10, 19]

has decomposition into 4 intervals [10, 10], [11, 12], [13, 16],
[17, 18] and [19, 19]. The error estimates of each interval
sum up. This explains the fluctuation in the Figure 10 for
estimating range queries with CMS and Ada-CMS, which is
universal for the dyadic interval trick. The global trend in
errors is clearly adaptive.

C. MEMORY VS ACCURACY TRADEOFF

FOR LC AND ADA-LC
In this section, we compare the accuracy of LC and its

adaptive variants Ada-LC (lin) and Ada-LC (exp), over time,
with a given fixed amount of memory. The experimental
setup is same as described in Section 6.1, except that we
replace the CMS variants of sketching algorithms with their
LC counterparts. We also used the same f(t) for linear and
exponential variants. It should be noted that LC and Ada-
LC keep a map for (item, time) pairs. If the pair is present,
then the estimation is very accurate for this (item, time)
pair, otherwise LC returns zero. LC and its variant always
underestimate the counts, whereas with CMS and its vari-
ants we always overestimate. As noted in Section 6.2, LC
and its variants are very slow. We use a more practical im-
plementation in which we remove smallest 10% of elements
from the map to make it run in reasonable time.

After summarizing the dataset with the LC and Ada-LC
sketches, we compare the estimates of counts of 1000 fre-
quent items over time with the corresponding true gold stan-
dard counts. The plot of the mean absolute error over time
for LC and Ada-LC schemes, is shown in Figure 11. To
show the variation with respect to memory we show plots
for three different values of w = {216, 217, 218}.
Observations: We can see that Ada-LC, on an average,
gets more hits for recent time interval compared to LC.
For very old time instances, LC is better on an average.
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Figure 9: Average absolute error for estimating range queries with time for all the four competing schemes.
Hokusai has significantly worse errors. See Figure 10 for a better visualization of comparisons between the
errors of CMS and Ada-CMS.

This clearly demonstrates the adaptive nature of the Ada-
LC compared to LC. The trends are consistent. Again Ada-
LC (exp) is more aggressive than Ada-LC (lin) as expected.
Thus, the adaptive variants, which are strict generalization
of classical LC algorithm, achieve the desired time adapt-
ability, which is not surprising given our theoretical results.
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Figure 10: Average absolute error over time, for estimating range queries, with CMS and Ada-CMS. The
global trend clearly shows the adaptive nature of Ada-CMS with time
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Figure 11: Average absolute error for estimating range queries with time for LC and its adaptive variants.
On an average Ada-LC clearly shows adaptive behaviors.


